- Computer Vision이 어려운 이유
1) Viewpoint variation
2) Illumination
3) Deformation
4) Occlusion - 가려져있는 것/일부만 보이는 경우
5) Background clutter
6) Intraclass variation - Rule-based vs Data-Driven Approach
- Rule-based - Hand crafted features
1) edge&corners : 픽셀값이 갑자기 변하는 경우(미분해서)
2) Bag of words
3) HOG(Histogram of Oriented Gradient for human detecting)
- Data-Driven
Deel Learning Alg. === [Feature Extractor -> Features + ML Alg.] - KNN (K-Nearest Neighbors)
- Distance Metric: L1 distance & L2 distance
- very slow at test time
- curse of dimensionality 차원의 저주 --> 일부만 뽑아서.. Manifold learning...
- distance metrics on pixels are not informative
- KNN on images never used! - Data Split
[train+validation]+test
- Linear Classification
'딥러닝 > cs231n' 카테고리의 다른 글
7. Training Neural Networks 2 (0) | 2024.04.29 |
---|---|
6. Training Neural Networks 1 (0) | 2024.04.08 |
5. Convolutional Neural Networks (0) | 2024.04.08 |
4. Introduction to Neural Networks (0) | 2024.04.02 |
Lecture 3: Loss Function and Optimization (0) | 2024.04.01 |