본문 바로가기
딥러닝/cs231n

Lecture 2 : Image Classification Pipeline

by sonysame 2024. 4. 1.
  • Computer Vision이 어려운 이유
    1) Viewpoint variation
    2) Illumination
    3) Deformation
    4) Occlusion - 가려져있는 것/일부만 보이는 경우
    5) Background clutter
    6) Intraclass variation

  • Rule-based vs Data-Driven Approach
    - Rule-based - Hand crafted features
    1) edge&corners : 픽셀값이 갑자기 변하는 경우(미분해서)
    2) Bag of words
    3) HOG(Histogram of Oriented Gradient for human detecting)

    - Data-Driven
    Deel Learning  Alg. === [Feature Extractor -> Features + ML Alg.]

  • KNN (K-Nearest Neighbors)
    - Distance Metric: L1 distance & L2 distance

    - very slow at test time
    - curse of dimensionality 차원의 저주 --> 일부만 뽑아서.. Manifold learning...
    - distance metrics on pixels are not informative
    - KNN on images never used!

  • Data Split
    [train+validation]+test
  • Linear Classification

 

'딥러닝 > cs231n' 카테고리의 다른 글

7. Training Neural Networks 2  (0) 2024.04.29
6. Training Neural Networks 1  (0) 2024.04.08
5. Convolutional Neural Networks  (0) 2024.04.08
4. Introduction to Neural Networks  (0) 2024.04.02
Lecture 3: Loss Function and Optimization  (0) 2024.04.01